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* Thermal history

* Heat flow at the melt pool scale
* Processing maps

* Heat flow : a multiscale problem

* Size effects



Thermal history

Melt pool morphology
The melt pool is elongated, with a high aspect ratio.

Laser power 50 W, scanning speed 0.1 m/s
~ 13.0 kKW/mm?
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The melt-pool dimensions and morphology are related to:
* the process parameters (scanning speed, laser power...)
* the material and powder properties (thermal conductivity, packing density...)

Zhang et al., 2018



Heat flow in LPBF

Schematic view of the LPBF process
at the melt pool scale
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Porosity: processing map el P
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Porosity: processing map

Normalized enthalpy vs normalized melt pool depth
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Porosity: processing map

Is the processing map universal?
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Porosity: processing map

Powder vs absorptivity?
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Porosity: processing map

Finite element calculations and translation rule
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Porosity: processing map

Predicting optimal LPBF conditions for and stainless steel,
based on bronze data

B Conduction bronze
® Keyhole bronze

5.0 1

| Bronze
4.5 - T
- | Printed 316L sample with a
| diffarant lacar ennt cize hacad on
3.5 Printed red gold sample based on g
T s 0_' bronze optimized parameters S
; Relative density= - %
2.5 ' 99.86% .

2.0 - »
R | Relative density=:
99.95%

10
Ghasemi-Tabasi et al., Additive Manufacturing, 2020



Porosity: processing map

Normalized enthalpy vs normalized melt pool depth

Increase in enthalpy AH = a, P
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Absorptivity as a function of processing regime
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M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N. Skat Tiedje, J. Henri Hattel, Keyhole-induced
porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation,
Additive Manufacturing 30 (2019), 100835, https://doi.org/10.1016/j.addma.2019.100835
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Absorptivity and energy absorption
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M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N. Skat Tiedje, J. Henri Hattel, Keyhole-induced
porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation,
Additive Manufacturing 30 (2019), 100835, https://doi.org/10.1016/j.addma.2019.100835
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Heat flow in LPBF : a multiscale problem

Schematic view of maximum T reached at the part scale
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Contour plot of maximum temperature attained during the entire build
simulation. Region D shows higher maximum temperatures than Region C.
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Ranjan, R.; Ayas, C.; Langelaar, M.; van Keulen, F. Fast Detection of Heat Accumulation in Powder Bed Fusion Using
Computationally Efficient Thermal Models. Materials 2020, 13, 4576. https://doi.org/10.3390/ma13204576
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Depending on the value of X (sample
dimension), the temperatures

reached in samples change:

o B phase lasts 7 ms for x=6 mm
scanning vector

o B phase lasts 84 ms for x=2 mm

. S. Hocine, H. Van Swygenhoven, S. Van Petegem, C. Sin Ting Chang, T.
scanning vector

Maimaitiyili, G. Tinti, D. Ferreira Sanchez, D. Grolimund, N. Casati, Operando
X-ray diffraction during laser 3D printing, Materials Today 34 (2020), 30-40,
(B = high temperature https://doi.org/10.1016/j.mattod.2019.10.001

phase in Ti-6Al-4V)

(See chapter on microstructure control through processing)
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